34 research outputs found

    An Intimate Relationship between ROS and Insulin Signalling: Implications for Antioxidant Treatment of Fatty Liver Disease

    Get PDF
    Oxidative stress damages multiple cellular components including DNA, lipids, and proteins and has been linked to pathological alterations in nonalcoholic fatty liver disease (NAFLD). Reactive oxygen species (ROS) emission, resulting from nutrient overload and mitochondrial dysfunction, is thought to be a principal mediator in NAFLD progression, particularly toward the development of hepatic insulin resistance. In the context of insulin signalling, ROS has a dual role, as both a facilitator and inhibitor of the insulin signalling cascade. ROS mediate these effects through redox modifications of cysteine residues affecting phosphatase enzyme activity, stress-sensitive kinases, and metabolic sensors. This review highlights the intricate relationship between redox-sensitive proteins and insulin signalling in the context of fatty liver disease, and to a larger extent, the importance of reactive oxygen species as primary signalling molecules in metabolically active cells

    Transcriptional Control of Adipose Lipid Handling by IRF4

    Get PDF
    SummaryAdipocytes store triglyceride during periods of nutritional affluence and release free fatty acids during fasting through coordinated cycles of lipogenesis and lipolysis. While much is known about the acute regulation of these processes during fasting and feeding, less is understood about the transcriptional basis by which adipocytes control lipid handling. Here, we show that interferon regulatory factor 4 (IRF4) is a critical determinant of the transcriptional response to nutrient availability in adipocytes. Fasting induces IRF4 in an insulin- and FoxO1-dependent manner. IRF4 is required for lipolysis, at least in part due to direct effects on the expression of adipocyte triglyceride lipase and hormone-sensitive lipase. Conversely, reduction of IRF4 enhances lipid synthesis. Mice lacking adipocyte IRF4 exhibit increased adiposity and deficient lipolysis. These studies establish a link between IRF4 and the disposition of calories in adipose tissue, with consequences for systemic metabolic homeostasis

    β-Aminoisobutyric Acid Induces Browning of White Fat and Hepatic β-Oxidation and Is Inversely Correlated with Cardiometabolic Risk Factors

    Get PDF
    The transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) regulates metabolic genes in skeletal muscle and contributes to the response of muscle to exercise. Muscle PGC-1α transgenic expression and exercise both increase the expression of thermogenic genes within white adipose. How the PGC-1α-mediated response to exercise in muscle conveys signals to other tissues remains incompletely defined. We employed a metabolomic approach to examine metabolites secreted from myocytes with forced expression of PGC-1α, and identified β-aminoisobutyric acid (BAIBA) as a small molecule myokine. BAIBA increases the expression of brown adipocyte-specific genes in white adipocytes and β-oxidation in hepatocytes both in vitro and in vivo through a PPARα-mediated mechanism, induces a brown adipose-like phenotype in human pluripotent stem cells, and improves glucose homeostasis in mice. In humans, plasma BAIBA concentrations are increased with exercise and inversely associated with metabolic risk factors. BAIBA may thus contribute to exercise-induced protection from metabolic diseases

    Diet-Induced Models of Non-Alcoholic Fatty Liver Disease: Food for Thought on Sugar, Fat, and Cholesterol

    No full text
    Non-alcoholic fatty liver disease (NAFLD) affects approximately 1 in 4 people worldwide and is a major burden to health care systems. A major concern in NAFLD research is lack of confidence in pre-clinical animal models, raising questions regarding translation to humans. Recently, there has been renewed interest in creating dietary models of NAFLD with higher similarity to human diets in hopes to better recapitulate disease pathology. This review summarizes recent research comparing individual roles of major dietary components to NAFLD and addresses common misconceptions surrounding frequently used diet-based NAFLD models. We discuss the effects of glucose, fructose, and sucrose on the liver, and how solid vs. liquid sugar differ in promoting disease. We consider studies on dosages of fat and cholesterol needed to promote NAFLD versus NASH, and discuss important considerations when choosing control diets, mouse strains, and diet duration. Lastly, we provide our recommendations on amount and type of sugar, fat, and cholesterol to include when modelling diet-induced NAFLD/NASH in mice

    Lipid Raft-dependent Glucagon-like Peptide-2 Receptor Trafficking Occurs Independently of Agonist-induced Desensitization

    No full text
    The intestinotrophic and cytoprotective actions of glucagon-like peptide-2 (GLP-2) are mediated by the GLP-2 receptor (GLP-2R), a member of the class II glucagon-secretin G protein-coupled receptor superfamily. Although native GLP-2 exhibits a short circulating half-life, long-acting degradation-resistant GLP-2 analogues are being evaluated for therapeutic use in human subjects. Accordingly, we examined the mechanisms regulating signaling, internalization, and trafficking of the GLP-2R to identify determinants of receptor activation and desensitization. Heterologous cells expressing the transfected rat or human GLP-2R exhibited a rapid, dose-dependent, and prolonged desensitization of the GLP-2–stimulated cAMP response and a sustained GLP-2–induced decrease in levels of cell surface receptor. Surprisingly, inhibitors of clathrin-dependent endocytosis failed to significantly decrease GLP-2R internalization, whereas cholesterol sequestration inhibited ligand-induced receptor internalization and potentiated homologous desensitization. The hGLP-2R localized to both Triton X-100–soluble and –insoluble (lipid raft) cellular fractions and colocalized transiently with the lipid raft marker caveolin-1. Although GLP-2R endocytosis was dependent on lipid raft integrity, the receptor transiently associated with green fluorescent protein tagged-early endosome antigen 1–positive vesicles and inhibitors of endosomal acidification attenuated the reappearance of the GLP-2R on the cell surface. Our data demonstrate that GLP-2R desensitization and raft-dependent trafficking represent distinct and independent cellular mechanisms and provide new evidence implicating the importance of a clathrin- and dynamin-independent, lipid raft-dependent pathway for homologous G protein-coupled receptor internalization

    PGC-1α negatively regulates hepatic FGF21 expression by modulating the heme/Rev-Erbα axis

    No full text
    FGF21 is a hormone produced in liver and fat that dramatically improves peripheral insulin sensitivity and lipid metabolism. We show here that obese mice with genetically reduced levels of a key hepatic transcriptional coactivator, PGC-1α, have improved whole-body insulin sensitivity with increased levels of hepatic and circulating FGF21. Gain- and loss-of-function studies in primary mouse hepatocytes show that hepatic FGF21 levels are regulated by the expression of PGC-1α. Importantly, PGC-1α-mediated reduction of FGF21 expression is dependent on Rev-Erbα and the expression of ALAS-1. ALAS-1 is a PGC-1α target gene and the rate-limiting enzyme in the synthesis of heme, a ligand for Rev-Erbα. Modulation of intracellular heme levels mimics the effect of PGC-1α on FGF21 expression, and inhibition of heme biosynthesis completely abrogates the down-regulation of FGF21 in response to PGC-1α. Thus, PGC-1α can impact hepatic and systemic metabolism by regulating the levels of a nuclear receptor ligand

    PGC-1α4 Interacts with REST to Upregulate Neuronal Genes and Augment Energy Consumption in Developing Cardiomyocytes

    No full text
    Transcriptional coactivator PGC-1α is a main regulator of cardiac energy metabolism. In addition to canonical PGC-1α1, other PGC-1α isoforms have been found to exert specific biological functions in a variety of tissues. We investigated the expression patterns and the biological effects of the non-canonical isoforms in the heart. We used RNA sequencing data to identify the expression patterns of PGC-1α isoforms in the heart. To evaluate the biological effects of the alternative isoform expression, we generated a transgenic mouse with cardiac-specific overexpression of PGC-1α4 and analysed the cardiac phenotype with a wide spectrum of physiological and biophysical tools. Our results show that non-canonical isoforms are expressed in the heart, and that the main variant PGC-1α4 is induced by β-adrenergic signalling in adult cardiomyocytes. Cardiomyocyte specific PGC-1α4 overexpression in mice relieves the RE1-Silencing Transcription factor (REST)-mediated suppression of neuronal genes during foetal heart development. The resulting de-repression of REST target genes induces a cardiac phenotype with increased cellular energy consumption, resulting in postnatal dilated cardiomyopathy. These results propose a new concept for actions of the PGC-1α protein family where activation of the Pgc-1α gene, through its isoforms, induces a phenotype with concurrent supply and demand for cellular energy. These data highlight the biological roles of the different PGC-1α isoforms, which should be considered when future therapies are developed

    ErbB Signaling Is Required for the Proliferative Actions of GLP-2 in the Murine Gut

    No full text
    Background & Aims: Glucagon-like peptide-2 (GLP-2) is a 33-amino acid peptide hormone secreted by enteroendocrine cells in response to nutrient ingestion. GLP-2 stimulates crypt cell proliferation leading to expansion of the mucosal epithelium; however, the mechanisms transducing the trophic effects of GLP-2 are incompletely understood. Methods: We examined the gene expression profiles and growth-promoting actions of GLP-2 in normal mice in the presence or absence of an inhibitor of ErbB receptor signaling, in Glp2r-/- mice and in Egfrwa2 mice harboring a hypomorphic point mutation in the epidermal growth factor receptor. Results: Exogenous GLP-2 administration rapidly induced the expression of a subset of ErbB ligands including amphiregulin, epiregulin, and heparin binding (HB)-epidermal growth factor, in association with induction of immediate early gene expression in the small and large bowel. These actions of GLP-2 required a functional GLP-2 receptor because they were eliminated in Glp2r-/- mice. In contrast, insulin-like growth factor-I and keratinocyte growth factor, previously identified mediators of GLP-2 action, had no effect on the expression of these ErbB ligands. The GLP-2-mediated induction of ErbB ligand expression was not metalloproteinase inhibitor sensitive but was significantly diminished in Egfrwa2 mice and completed abrogated in wild-type mice treated with the pan-ErbB inhibitor CI-1033. Furthermore, the stimulatory actions of GLP-2 on crypt cell proliferation and bowel growth were eliminated in the presence of CI-1033. Conclusions: These findings identify the ErbB signaling network as a target for GLP-2 action leading to stimulation of growth factor-dependent signal transduction and bowel growth in vivo
    corecore